

Enhanced environmental protection inspection for efficient control of air quality monitoring and of all entities under obligation within system of greenhouse gas emission allowance trading, in order to achieve better quality of air in Republic of Croatia

Theme 4: Networks

Mato Papić dipl. ing. stroj. Bojan Abramović dipl. ing. stroj.

4.1 WHAT ARE THE AIR QUALITY MONITORING NETWORKS?

Air quality monitoring is carried out by organizing a network of units-stations and their allocation to a particular area.

Air quality monitoring networks are the basic unit of each air quality monitoring.

4.1 WHAT ARE THE AIR QUALITY MONITORING NETWORKS?

- From experience it is known that in a certain area, no matter how big it is, there may be significant differences in concentrations of pollutants in the air.
- Also, it is known that at the same site concentration can vary significantly over time.
- If we want to fulfil the basic target of air quality monitoring, certainty of determining the spatial and temporal distribution of pollutants in the air in a certain area has to be greater. The best way to do this is by deploying measuring instruments at the characteristic points of that area and measuring during a representative time interval

In order to protect the instruments from the weather conditions, and avoid building a large number of small laboratories, instruments will be placed in a shelter that will provide appropriate conditions for the operation of the instruments and will thus create stations for air quality monitoring. Each station will contain the instruments for the measurement of those pollutants which have to be measured.

During the measurement the instruments, often located at different locations, generate a lot of measuring data. That's why modern IT technology is used and all the instruments from all the stations are connected to a computer that accepts their measurement results and keeps them in one place in one laboratoty.

All of the above mentioned elements together make the air quality monitoring network

So, air quality monitoring networks are the measuring systems which consist of measuring stations connected to the central computer, which, with the help of a software application, communicates with stations, downloads and saves the results.

Example of a network that consists of three stations is shown in Figure 1, and the example of data flow from the station to the user in Figure 2.

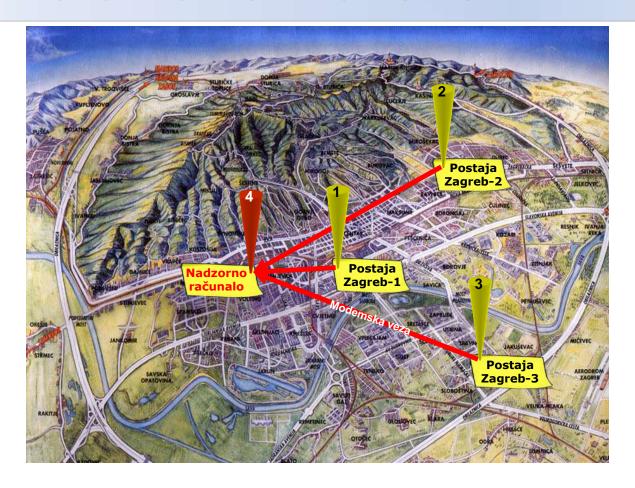


Figure 1. Air quality monitoring network

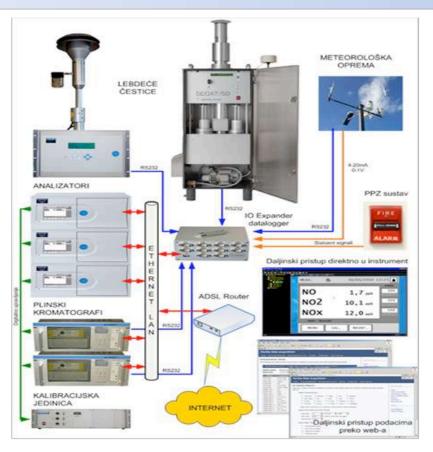


Figure 2. Example of data flow from the station to the user

- For the purpose of air quality monitoring in zones (table 1) and agglomerations (table 2 and fig. 3) air quality monitoring network has been established in Republic Croatia (the state network).
- The state network is an integral part of the environment monitoring and is financed from the state budget.
- Air quality data from the state network are public, they are published on the Environmental Agency's website and are used for the purposes of the air quality reports and data exchange with the EU. These data are an integral part of the ait protection information system.

Table 1. The classification of the zones in the Republic of Croatia

OZNAKA ZONE	NAZIV ZONE	OBUHVAT ZONE			
		Osječko-baranjska županija (izuzimajući aglomeraciju HR OS)			
		Požeško-slavonska županija			
		Virovitičko-podravska županija			
		Vukovarsko-srijemska županija			
HR 1	Kontinentalna	Bjelovarsko-bilogorska županija			
IIK I	Hrvatska	Koprivničko-križevačka županija			
		Krapinsko-zagorska županija			
		Međimurska županija			
		Varaždinska županija			
		Zagrebačka županija (izuzimajući aglomeraciju HR ZG)			
HR 2	Industrijska	Brodsko-posavska županija			
IIK Z	zona	Sisačko-moslavačka županija			
	Lika, Gorski	Ličko-senjska županija			
HR 3	kotar i	Karlovačka županija			
	Primorje	Primorsko-goranska županija (izuzimajući aglomeraciju HR RI)			
HR 4	Istra	Istarska županija			
		Zadarska županija			
IIDE	Dalmaaiia	Šibensko-kninska županija			
HR 5	Dalmacija	Splitsko-dalmatinska županija (izuzimajući aglomeraciju HR ST),			
		Dubrovačko-neretvanska županija			

Table 2. Classification of agglomeration in the Republic of Croatia

OZNAKA AGLOMERACIJE	NAZIV AGLOMERACIJE	OBUHVAT AGLOMERACIJE		
HR ZG	Zagreb	Grad Zagreb, Grad Dugo Selo, Grad Samobor, Grad Sveta Nedjelja, Grad Velika Gorica, Grad Zaprešić		
HR OS	Osijek	Grad Osijek		
HR RI	Grad Rijeka, Grad Bakar, Grad Kastav, Grad Kraljevica Grad Opatija, Općina Viškovo, Općina Čavle, Općina Jelenje, Općina Kostrena, Općina Klana, Općina Matulji Općina Lovran, Općina Omišalj			
HR ST	Split	Grad Split, Grad Kaštela, Grad Solin, Grad Trogir, Općina Klis, Općina Podstrana, Općina Seget		

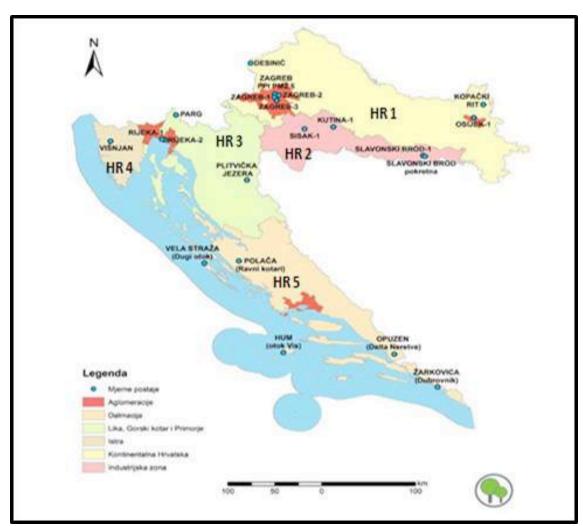


Figure 3. Zones and agglomerations for the monitoring and evaluation of air quality in the Republic of Croatia

The public network is designed to provide information on levels of air pollution in all zones and agglomerations.

The Regulation on the establishment of a list of measuring points for the monitoring of concentrations of certain pollutants in the air and the location of measurement stations in the national network for the continuous monitoring of air quality (Official Gazette 65/16) establishes a list of measuring locations for the monitoring of pollutants concentration in the air: sulphur dioxide, nitrogen dioxides and nitrogen oxides, PM10 and PM2,5, lead, benzene, carbon monoxide, ground-level ozone and precursors of ground-level ozone, arsenic, cadmium, mercury, nickel, benzo (a) pyrene and other polycyclic aromatic hydrocarbons in air.

This regulation also establishes the location of measuring stations in the state network for permanent monitoring of air quality in zones and agglomerations, Table 3. and Figure 4.

Table 3. The location of measuring stations in the air quality monitoring state network

ZONA / AGLOMERACIJA	MJERNO MJESTO	KLASIFIKACIJA MJERNOG MJESTA	ONEČIŠĆUJUĆA TVAR
	Zagreb-1	Prometna	NO2; benzen; PM10; BaP i PAU (BaAnt, BbF, BkF, IP, DahA) u PM10; Hg; teški metali (Pb, Ni, Cd, As) u PM10
HR ZG	Zagreb-3	gradska pozadinska/prigradska (O3)	O3; NO2; PM10; BaP i PAU (BaAnt, BbF, BkF, IP, DahA) u PM10; HOS-evi
	Velika Gorica*	gradska pozadinska/prigradska (O3)	PM _{2,5} uvodi se: O ₃ ; NO ₂
	Zagreb PPI PM2,5 – Ksaverska cesta*	gradska pozadinska	PPI PM _{2,5} ; kemijski sastav PM _{2,5} (Cl ⁻ , NO ³⁻ , SO ₄ ²⁻ , Na ⁺ , NH ₄ ⁺ , K ⁺ , Mg ²⁺ i Ca ²⁺) (EC, OC)

Table 3. The location of measuring stations in the air quality monitoring state network (continuation)

HR OS	Osijek-1	prometna	O3; NO2; benzen; PM10; PM2,5		
HR RI	Rijeka-2	gradska pozadinska/prigradska (O3)	O3; SO2; NO2; PM10; PM2,5		
HR ST	Split-1*	gradska pozadinska/prigradska (O3)	SO2; NO2; PM10; PM2,5 uvodi se: O3		
	Kaštel Sućurac*	prigradska pozadinska	SO ₂ ; NO ₂		
	Kopački rit	ruralna pozadinska	O3; PM10; PM2,5		
HR 1	Desinić	ruralna (O3)/ruralna pozadinska	O3; NO2; PM10		
	Varaždin	prigradska	O3; NO2		

Table 3. The location of measuring stations in the air quality monitoring state network (continuation)

	Slavonski Brod-1	prigradska (O3)/gradska pozadinska	O3; SO2; NO2; PM2,5
HR 2	Sisak-1	industrijska	Benzen; PM10; BaP i PAU (BaAnt, BbF, BkF, IP, DahA) u PM10; teški metali (Pb, Ni, Cd, As) u PM10
	Kutina-1	prigradska (O3)/gradska pozadinska	O3; PM10

Table 3. The location of measuring stations in the air quality monitoring state network (continuation)

HR 3	Plitvička jezera	ruralna pozadinska	PM10; PM2,5; kemijski sastav PM2,5 (Cl ⁻ , NO3 ⁻ , SO4 ²⁻ , Na ⁺ , NH4 ⁺ , K ⁺ , Mg ²⁺ i Ca ²⁺) (EC, OC)	
	Parg	ruralna pozadinska	O ₃	
	Karlovac	prigradska	O3; NO2	
HR 4	Višnjan	ruralna pozadinska	PM10	
nk4	Pula Fižela*	prigradska	O3; NO2	
	Hum (otok Vis)	ruralna pozadinska O3		
HR 5	Žarkovica (Dubrovnik)	prigradska	O3; NO2; PM10; PM2,5	

^{*} mjerne postaje koje nisu sastavni dio državne mreže ali se koriste za potrebe razmjene podataka do uspostave

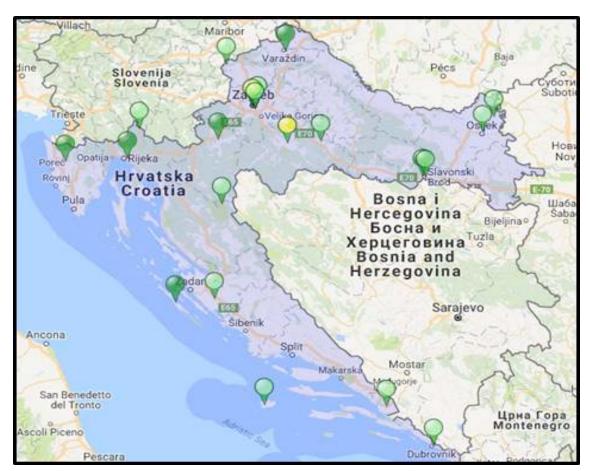


Fig. 4. Sate network for air quality monitoring without the stations from local networks that are currently being used.

The Air Quality Monitoring Program in the state network (Official Gazette 73/16) defines all measurements in the national network. Most measurements are already being carried out and measurements for individual pollutants will be introduced later.

The program include:

Program A air quality monitoring in the stations established in the aglomerations and

Program B air quality monitoring in the stations established in the zones.

The Program provides detailed measurement program for each station in the state network and pollutant list, with a measurement method for each of them. Also, locations and a measurement program for new monitoring stations in the state network that have to be built are also given.

Articles 31., 32. and 33. of ZOZZ give the legal framework for monitoring the air quality outside of the state network at the local level.

There are three basic reasons and ways to run measurements outside the state network:

1. County, the City of Zagreb and the cities establish air quality monitoring stations in their area, if they estimate that levels of contamination are more than the prescribed limit values (GV), i.e. if they estimate there are reasonable grounds for that (in particular in the case of increased industrial development, business and industrial zone expansion and so on). Representative body of these units determines the location of air quality monitoring stations, defines the Program for measuring pollution levels and ensures the conditions for its implementation.

- 2. The polluter has to ensure air quality monitoring according to the environmental acceptability decision or the permit to the integrated environmental protection requirements or environmental permit in accordance with the Environmental Protection Law.
- 3. In cases where there is a suspicion, expressed by citizens' complaint, that there has been an air pollution whose quality is likely to impair human health, quality of life and / or adversely affect any environmental component, special purpose measurements or assessment of the level of contamination must be carried out. The executive body of the City of Zagreb, the city and the municipality, at the request of the environmental inspection to determine the justification of the above suspicions, is obliged to make a decision on special purposes measuring or estimating the level of contamination within eight days. If the measurement or estimation determines that no excessive contamination has occurred or excessive contamination has occurred and the polluter is not known, the costs should be paid by the units of local self-government whose decision has been taken by the executing authority.

If excessive air pollution is determined by measurement or estimation, and the polluter is known, the cost of measurement or estimation should be paid by the polluter. If the executive body of the City of Zagreb, the city and the municipalities does not make a decision, the Ministry shall provide measurements of special purpose or assessment of the pollution level at the expense and responsibility of the local self-government unit whose executive body has not made a decision.

All the measurements which are performed from the reasons mentioned above must be carried out in accordance with the regulations on the air quality monitoring by the testing laboratory with permission from the Ministry for air quality monitoring for those pollutants that will be measured on a local area network. The engagement testing laboratories shall submit original and validated air quality monitoring data and report on pollution levels and air quality assessment to the competent county administrative authority of the County, City of Zagreb and the city by March 31 of the current year for the previous calendar year and the competent authority shall submit the same data in the Agency until April 30 of the same year.

Only automatic stations that use the reference methods are shown for all zones and agglomerations except for the agglomeration HR-ZG which includes the stations with sampling methods also (manual methods).

Table 4. Local networks and HR-ZG agglomeration stations

-						
	R B	IME POSTAJE	Z/A	R/A	LOKACIJA	ONEČIŠĆUJUĆE TVARI KOJE SE MJERE REFERENTNIM METODAMA
	1	Đorđićeva ulica	HR-ZG	R	Zagreb	PM ₁₀ i metali Pb, Mn, Cd, As, Ni, Cu, Fe, Zn u njima, PM _{2,5}
	2	Ksaverska cesta	HR-ZG	A	Zagreb	PM ₁₀ i metali Pb, Mn, Cd, As, Ni, Cu, Fe, Zn u njima, sulfati, nitrati, kloridi u PM ₁₀ , BaP u PM ₁₀ , PM _{2,5} čestice,
	3	<u>Pešćenica</u>	HR-ZG	R	Zagreb	PM ₁₀ i metali Pb, Mn, Cd, As, Ni, Cu, Fe, Zn u njima,
	4	Prilaz baruna Filipovića	HR-ZG	R	Zagreb	PM ₁₀ i metali Pb, Mn, Cd, As, Ni, Cu, Fe, Zn u njima,
	5	Siget	HR-ZG	A	Zagreb	NO ₂ , ozon, PM ₁₀ i metali Pb, Mn, Cd, As, Ni, Cu, Fe, Zn u njima, PM _{2,5}

Table 4. Local networks and HR-ZG agglomeration stations (continuation)

6	Susedgrad	HR-ZG	R	Zagreb	PM ₁₀ i metali Pb, Mn, Cd, As, Ni, Cu, Fe, Zn u njima,
7	Mirogojska16	HR-ZG	A	Zagreb	SO ₂ , NO ₂ , CO, O ₃ , PM ₁₀ , benzen
8	Jakuševac	HR-ZG	A	Zagreb	H ₂ S, PM ₁₀ čestice, NH ₃ merkaptani
9	Vrhovec	HR-ZG	A	Zagreb	NO ₂
10	Bijenik	HR-ZG	A	Zagreb	SO ₂ , PM ₁₀
11	MZLZ	HR-ZG	A	V. Gorica	CO, NO2, PM10, O3, PM10 i metali Pb, Mn, Cd, As, Ni, Cu, Fe, Zn i BaP u njima

Figure 5. The position of local networks and HR-ZG agglomeration stations

Table 5. Local networks and stations in the Sisak-Moslavina county

RB	IME POSTAJE	Z/A	R/A	LOKACIJA	ONEČIŠĆUJUĆE TVARI KOJE SE MJERE REFERENRTNIM METODAMA
12	KT-2 Vatrogasni dom	HR-2	A	Kutina	SO ₂ , NO ₂ , NH ₃ , H ₂ S,
13	AMP Sisak 2	HR-2	A	Sisak	SO ₂ , NO ₂ , H ₂ S, CO, PM ₁₀ , PM ₁₀ (grav.) (Pb, Mn, Cd, Ni, As u PM ₁₀)
14	AMP Sisak 3	HR-2	A	Sisak	SO ₂ , NO ₂ , H ₂ S, PM ₁₀ , CO, benzen

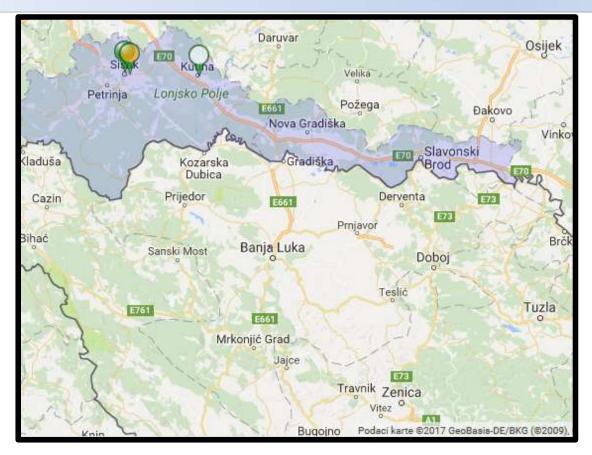


Figure 6. The position of local networks and stations in Sisak-Moslavina county

INZRAK

Table 6. Local networks and stations in Istrian County

R B	IME POSTAJE	Z/A	R/A	LOKACIJA	ONEČIŠĆUJUĆE TVARI KOJE SE MJERE REFERENRTNIM METODAMA
15	Fižela	HR-4	A	Pula	NO2, ozon, PM10 i metali Pb, Mn, Cd, As, Ni, Cu, Fe, Zn u njima, PM2,5
16	Koromačno	HR-4	A	Koromačno	SO_2 , NO_2 , PM_{10}
17	Ripenda	HR-4	A	Ripenda	SO2, NO2, PM10, O3
18	Sv. Katarina	HR-4	A	Sv Katarina	SO ₂ , NO ₂ , O ₃
19	Plomin	HR-4	A	Plomin	SO ₂ , NO ₂
20	Klavar	HR-4	A	Klavar	PM_{10}
21	Zajci	HR-4	A	Pićan,	SO ₂ , CO, H ₂ S i PM ₁₀
22	Čambarelići	HR-4	A	Pićan	SO ₂ , H ₂ S, PM ₁₀

Figure 7. The position of local networks and stations of the Istrian County

Table 7. Local networks and stations in HR-RI agglomeration

RB	IME POSTAJE	Z/A	R/A	LOKACIJA	ONEČIŠĆUJUĆE TVARI KOJE SE MJERE REFERENRTNIM METODAMA
23	Opatija - Gorovo	HR-RI	Α	Opatija	O ₃
24	Urini	HR-RI	A	Urinj, Općina Kostrena	SO ₂ , NO ₂ , NH ₃ , H ₂ S, CO, PM ₁₀ , PM _{2,5} , benzen, Pb/Cd/Ni u PM ₁₀ , EM, MM, DMS, DMDS,
25	Vrh Martinšćice	HR-RI	A	<u>Vrh</u> Martinšćice	H ₂ S, CO, PM ₁₀ , benzen,
26	Paveki	HR-RI	A	Paveki, Općina Kostrena	SO ₂ , NO ₂ , O ₃ , H ₂ S, CO, PM ₁₀ , PM _{2,5} , benzen, Pb/Cd/Ni u PM ₁₀ , EM, MM, DMS, DMDS
27	Krasica-Urinj	HR-RI	A	Krasica, Grad Bakar	SO ₂ , NO ₂ , O ₃ , H ₂ S, CO, PM ₁₀ , PM _{2,5} , benzen

Table 7. Local networks and stations in HR-RI agglomeration (continuation)

28	Bakar	HR-RI	A	Grad Bakar	PM_{10}
29	Martinšćica	HR-RI	A	Kostrena	PM ₁₀ i sadržaj metala (Pb, Cd),
30	Viševac	HR-RI	A	Viškovo	NH ₃ , H ₂ S, PM ₁₀ , CH4
31	Marišćina, Monitoring CZGO "Marišćina"	HR-RI	A	Viškovo	SO ₂ , H ₂ S, NO ₂ , O ₃ , NH ₃ , PM ₁₀ , CO, benzen
32	Krešimirova ulica	HR-RI	A	Rijeka	SO ₂ , NO ₂ , O ₃ , NH ₃ , PM ₁₀ , Pb, Cd, PAU u PM ₁₀

Figure 8. The position of local networks and stations in HR-RI agglomeration

4.4 LOCAL NETWORK FOR AIR QUALITY MONITORING

Table 8. Local networks and stations in HR-ST agglomeration

R B	IME POSTAJE	Z/A	R/A	LOKACIJA	ONEČIŠĆUJUĆE TVARI KOJE SE MJERE REFERENRTNIM METODAMA		
33	AMS 1 – Kaštel Sućurac	HR-ST	A	Kaštel Sućurac, Grad Kaštela	SO ₂ , NO ₂ , PM10, Pb, Cd, PAU u PM ₁₀		
34	AMS 2 – <u>Sv</u> . <u>Kajo</u>	HR-ST	A	Sv. Kajo, Grad Solin	SO ₂ , NO ₂ , PM10, Pb, Cd, PAU u PM ₁₀		
35	AMS 3 – Split-centar	HR-ST	A	Split	SO ₂ , NO ₂ , PM10, Pb, Cd, PAU u PM10		
36	AMS Karepovac	HR-5	A	Karepovac	SO ₂ , NO ₂ , NH ₃ , H ₂ S, PM10, Pb, Cd, PAU u PM ₁₀		

Z/A – zona ili aglomeracija

R/A - ručne ili automatske metode

4.4 LOCAL NETWORK FOR AIR QUALITY MONITORING

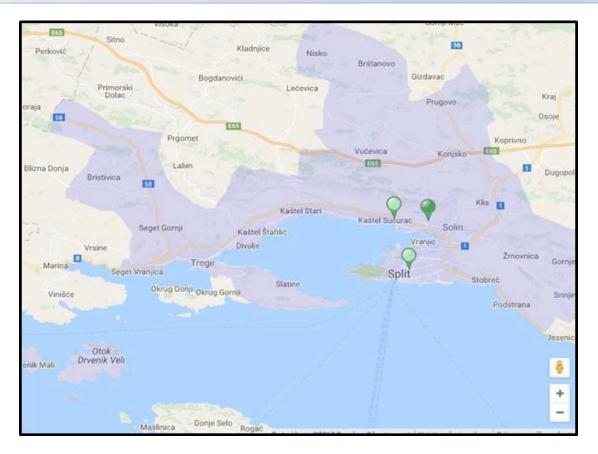


Figure 9. The position of local networks and stations in HR-ST agglomeration

Measures of special purpose must be carried out or it is necessary to estimate the level of pollution in cases where there is a suspicion expressed by citizens' complaint that air is contaminated so much that it can disturb human health, quality of life and / or have adverse effects on any environmental component. The executive body of the City of Zagreb, the city and the municipality, at the request of the environmental inspection to determine the justification of the above suspicion, is obliged to make a decision on the measurement of the special purpose or the assessment of the level of pollution within eight days.

These measurements are carried out after inspection supervision establishes a grounded suspicion of excessive pollution after the alert of the citizen.

The most common examples are the spread of unpleasant smells from a known or unknown source

Most often JLS or inspectors require:

- hydrogen sulphide
- Mercaptans
- Ammonia
- PM10

The first two can smell at concentrations of just a few ppb and can endanger the quality of life.

Unfortunately they are not the only "smelly" ...

PM10 is a pollutant that currently most endangers human health at the global level.

Complaints / complaints from citizens on unpleasant odors are common. If it's just about to, though it does look dramatic, there's no place to panic. All three substances are acutely toxic only at concentrations of 1000x higher than those causing stench.

Then the citizens can no longer smell them.

Eg. (lowest-adverse-effect level - LOAEL) The lowest concentration causing adverse effect for H2S is 15000 μg / m3 when it can cause eyes irritation (GV) and GV is 7 and 5 μg / m3.

In these measurements, attention should be paid to the

quality of data.

	Sumporov dioksid, dušikov dioksid i dušikovi oksidi i ugljikov monoksid sumporovodik	Benzeu merkaptani	Lebdeče čestice (PM ₂₀ /PM _{2.0}) i olovo	Prizemni ozon i s njim povezani NO i NO ₂	
	amonijak				
Mjerenja na stalnim mjernim mjestima ⁽¹⁾ :					
Nesigurnost	15%	25%	25%	15%	
Minimalni obuhvat podataka	90%	90%	90%	90% tijekom ljeta 75% tijekom zime	
Minimalna vremenska pokrivenost:					
– gradsko pozadinsko i prometno mjerno mjesto	-	35%(2)	-	-	
– industrijsko mjerno mjesto	-	90%	-	-	
Indikativna mjerenja:					
-nesigurnost	25%	30%	50%	30%	
– minimalni obuhvat podataka	90%	90%	90%	90%	
– minimalna vremenska pokrivenost	14%(0)	14%(7)	14%(0)	> 10% tijekom ljeta	

(4) One measurement a week at random uniformly distributed over the year, or eight weeks measurement distributed over the year.

2 weeks of measurements in each season!

NOVI PRAVILNIK O PRAĆENJU KVALITETE ZRAKA 7/2017	Sumporov dioksid, dušikov dioksid i dušikovi oksidi i ugljikov monoksid sumporovodik amonijak	Benzen merkaptani	Lebdeće čestice (PM 10/PM 2,5) i olovo	Prizemni ozon i s njim povezani NO i NO2
Mjerenja na stalnim mjernim mjestima ⁽¹⁾ :				
Nesigurnost	15%	25%	25%	15%
Minimalni obuhvat podataka	90%	90%	90%	90% tijekom ljeta 75% tijekom zime
Minimalna vremenska pokrivenost:				
– gradsko pozadinsko i prometno mjerno mjesto	-	35% (2)	-	-
– industrijsko mjerno mjesto	-	90%	-	-
Indikativna mjerenja:				
-nesigurnost	25%	30%	50%	30%
– minimalni obuhvat podataka	90%	90%	90%	90%
– minimalna vremenska pokrivenost	14% (4)	14% (3)	14% (4)	> 10% tijekom ljeta

It is essential to respect these goals because otherwise it is possible to make a completely wrong assessment of air quality.

Study of a sample example
Case study - "MEASUREMENTS of NH3. H2S and
MERCAPTANs in the Republic of Croatia legislation and
practice"

PM10 is often measured. Attention should be paid here to the methods. It is best if the measurements are performed by a reference method (gravimetry).

- beta beam attenuation lower
- optical methods more

It is imperative to make a "study of equivalence"

Case study - "THE EFFECT OF APPLICATION OF ECVIVALENCY CORRECTION FUNCTIONS TO EXCEEDING THE LIMIT VALUES FOR PM10 IN THE STATE NETWORK FOR AIR QUALITY MONITORING"

How to interpret this data-PERCENTILES

$$\frac{DBP}{MPV}$$

MVP-maximum time coverage () 365 days, 8760 hours DBP - permitted number of exceedances of the limit values for the pollutant

On the example of PM10: Limit Values 50 µg/m3, DBP 35 days

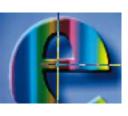
PERCENTILE =
$$\frac{365}{365-35}$$
 = 0, 904 (90, 4% percentile)

If the analysis of the data set to 90.4% percentile indicates a number greater than 50 it means that in the full set of data (365) there were at least 36 values> of the limit values (50). This means that in case of measurements over the year DBP exceeded.

O. T.	PM10	SO2	NO2	H2S	R-SH	NH3
MVP	365	365	8760	365	365	365
MVP - DBP	330	362	8742	358	358	358
PERCENTIL	0,904	0,992	0,998	0,981	0,981	0,981
Ne smije preći	50	125	200	5	30	100

An example for afternoon.

It is also necessary to be very careful when assessing sources of pollution especially for PM10 in the continental part of the Croatia.


Is mandatory to make a "study of equivalence,,

Case study

"ANALYSIS OF THE IMPACT OF THE ZAGREB INTERNATIONAL AIRPORT ON AIR OUALITY...

"THE ANALYSIS OF THE IMPACT OF WASTE LANDFILL PRUDINEC/JAKUŠEVAC ON AIR QUALITY IN THE VILLAGE OF JAKUŠEVAC"

THANK YOU FOR YOUR ATTENTION

<u>Disclaimer</u>: The contents of this publication are the sole responsibility of EKONERG – Energy Research and Environmental Protection Institute, Ltd. and can in no way be taken to reflect the views of the European Union

